

Q28QD010C00D41F

Cisco® QSFP-100G-LR4 Compatible 100GBase-LR4 QSFP28 Transceiver (SMF, 1295nm to 1309nm, 10km, LC, DOM)

Product Description

This Cisco[®] QSFP28 transceiver provides 100GBase-LR4 throughput up to 10km over single-mode fiber (SMF) using a wavelength of 1295nm to 1309nm via an LC connector. It is guaranteed to be 100% compatible with the equivalent Cisco[®] transceiver. This easy to install, hot swappable transceiver has been programmed, uniquely serialized and data-traffic and application tested to ensure that it will initialize and perform identically. Digital optical monitoring (DOM) support is also present to allow access to real-time operating parameters. We stand behind the quality of our products and proudly offer a limited lifetime warranty.

Skylane's transceivers are RoHS compliant and lead-free.

Features:

- SFF-8665 Compliance
- Duplex LC Connector
- Commercial Temperature 0 to 70 Celsius
- Single-mode Fiber
- Hot Pluggable
- Excellent ESD Protection
- Metal with Lower EMI
- RoHS Compliant and Lead Free

Applications:

- 100GBase Ethernet
- Access and Enterprise

For your product safety, please read the following information carefully before any manipulation of the transceiver:

ESD This t

This transceiver is specified as ESD threshold 1kV for SFI pins and 2kV for all others electrical input pins, tested per MIL-STD-883G, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module.

LASER SAFETY

This is a Class1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007).

The optical ports of the module need to be terminated with an optical connector or with a dust plug in order to avoid contamination.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit
Maximum Supply Voltage	Vcc	-0.5		3.6	V
Storage Temperature	TS	-40		85	°C
Operating Case Temperature	Тс	0	25	70	°C
Operating Humidity	RH	5		85	%
Receiver Damage Threshold, per Lane	Rxdmg	5.5			dBm

Electrical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Power Dissipation	PD			3.5	W		
Power Supply Voltage	Vcc	3.135	3.3	3.465	V		
Transmitter							
Differential data input swing per lane	Vin			900	Мvp-р		
Input Impedance (Differential)	Zin			10	%		
Stressed Input Parameters							
Eye width		0.46			UI		
Applied pk-pk sinusoidal jitter		IEEE 802.3bm Table 88-13					
Eye height		95			mv		
DC common mode voltage		-350		2850	mv		
Receiver							
Differential output amplitude		200		900	Мvp-р		
Output Impedance (Differential)	Zout			10	%		
Output Rise/Fall Time	tr/tf	12			ps	20%~80%	
Eye width		0.57			UI		
Eye height differential		228			mv		
Vertical eye closure				5.5	db		

Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes	
Transmitter							
Signaling Speed per Lane	Brave		25.78		Gbps		
Data Rate Variation		-100		+100			
Lane_0 Center Wavelength	λC0	1294.53	1295.56	1296.59	nm		
Lane_1 Center Wavelength	λC1	1299.02	1300.05	1301.09	nm		
Lane_2 Center Wavelength	λC2	1303.54	1304.58	1305.63	nm		
Lane_3 Center Wavelength	λC3	1308.09	1309.14	1310.19	nm		
Average Launch Power each Lane	P _{each}	-4.3		4.5	dBm	1	
Optical Modulation Amplitude (OMA) each Lane	ТхОМА	-1.3		4.5	dBm		
Difference in launch power between any two lanes (OMA)				5	dB		
Launch power in OMA minus TDP, each lane		-2.3			dBm		
Transmitter and dispersion penalty (TDP), each lane				2.2	dB		
Extinction Ratio	ER	4			dB		
Side-mode Suppression ratio	SMSRmin	30			dB		
Average launch power of OFF transmitter per lane				-30	dBm		
Relative Intensity Noise	RIN			-130	dB/hz		
Transmitter Reflectance				-12	dB		
Optical Return Loss Tolerance				20	dB		
Transmitter eye mask definitions: X1, X2, X3, Y1, Y2, Y3		0.25, 0.4, 0.45	, 0.25, 0.28, 0.4			2	
Receiver							
Signaling Speed per Lane	BRAVE		25.78		Gbps		
Data Rate Variation		-100		+100	ppm		
Damage threshold per lane	Rxdmg	5.5			dBm		
Lane_0 Center Wavelength	λC0	1294.53	1295.56	1296.59	nm		
Lane_1 Center Wavelength	λC1	1299.02	1300.05	1301.09	nm		
Lane_2 Center Wavelength	λC2	1303.54	1304.58	1305.63	nm		
Lane_3 Center Wavelength	λC3	1308.09	1309.14	1310.19	nm		
Average Receive Power per Lane	Rxpow	-10.6		4.5	dBm	3	
Receive Power (OMA) per Lane	RxOMA			4.5	dBm		
Receive Sensitivity in OMA per Lane	Rxsens			-8.6	dBm		
Receiver 3 dB electrical upper cutoff frequency, per lane				31	GHz		
Stressed Receiver Sensitivity (OMA) per Lane	RXSRS			-6.8	dBm	4	

Optical Return Loss	ORL			-26	dB			
LOS Assert	LOSA	-25			dBm			
LOS De-Assert	LOSD			-12	dBm			
LOS Hysteresis		0.5			dB			
Conditions of stressed receiver sensitivity test								
Vertical eye closure penalty	VECP		1.8		dB	5		
Stressed eye J2 Jitter	J2		0.3		UI	5		
Stressed eye J9 Jitter	19		0.47		UI	5		

Notes:

- 1. Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 2. Hit ratio 5x10⁻⁵.
- Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.
- 4. Measured with conformance test signal at TP3 for BER = 10–12.
- 5. Vertical eye closure penalty, stressed eye J2 Jitter, and stressed eye J9 Jitter are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Pin Descriptions						
Pin	Logic	Symbol	Name/Descriptions	Ref.		
1		GND	Module Ground	1		
2	CML-I	Tx2-	Transmitter inverted data input			
3	CML-I	Tx2+	Transmitter non-inverted data input			
4		GND	Module Ground	1		
5	CML-I	Tx4-	Transmitter inverted data input			
6	CML-I	Tx4+	Transmitter non-inverted data input			
7		GND	Module Ground	1		
8	LVTTL-I	MODSEIL	Module Select	2		
9	LVTTL-I	ResetL	Module Reset	2		
10		VCCRx	+3.3v Receiver Power Supply			
11	LVCMOS-I	SCL	2-wire Serial interface clock	2		
12	LVCMOS-I/O	SDA	2-wire Serial interface data	2		
13		GND	Module Ground	1		
14	CML-O	RX3+	Receiver non-inverted data output			
15	CML-O	RX3-	Receiver inverted data output			
16		GND	Module Ground	1		
17	CML-O	RX1+	Receiver non-inverted data output			
18	CML-O	RX1-	Receiver inverted data output			
19		GND	Module Ground	1		
20		GND	Module Ground	1		
21	CML-O	RX2-	Receiver inverted data output			
22	CML-O	RX2+	Receiver non-inverted data output			
23		GND	Module Ground	1		
24	CML-O	RX4-	Receiver inverted data output			
25	CML-O	RX4+	Receiver non-inverted data output			
26		GND	Module Ground	1		
27	LVTTL-O	ModPrsL	Module Present, internal pulled down to GND			
28	LVTTL-O	IntL	Interrupt output, should be pulled up on host board	2		
29		VCCTx	+3.3v Transmitter Power Supply			
30		VCC1	+3.3v Power Supply			
31	LVTTL-I	LPMode	Low Power Mode	2		
32		GND	Module Ground	1		
33	CML-I	Tx3+	Transmitter non-inverted data input			
34	CML-I	Tx3-	Transmitter inverted data input			
35		GND	Module Ground	1		
36	CML-I	Tx1+	Transmitter non-inverted data input			
37	CML-I	Tx1-	Transmitter inverted data input			
38		GND	Module Ground	1		

Notes:

- 1. Module circuit ground is isolated from module chassis ground with in the module.
- 2. Open collector; should be pulled up with 4.7k-10k ohms on host board to a voltage between 3.15V and 3.6V.

Electrical Pin-out Details

Mechanical Specifications

About Skylane Optics

Skylane is a leading provider of transceivers for optical communication.

We offer an extensive portfolio for the enterprise, access, datacenter and metropolitan fiber optical market as well as for smart home applications and home networks.

We cover the European, South American and North American market with a strong partner network and have offices in Belgium, Brazil, Sweden and USA.

Our offerings are characterized by high quality and performance. In combination with our strong technical support, we enable our customers to build cost optimized network solutions.

We offer an extensive range of high-quality products including transceivers (Optical and copper), Active Optical Cable (AOC), Direct Attach Cable (DAC), Mux/Demux, Coding Box.

